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Abstract—This paper considers filtering for linear systems subjected to persistent exogenous
disturbances. The filtering quality is characterized by the size of the bounding ellipsoid that
contains the estimated output of the system. A regular approach is proposed to solve the
nonfragile filtering problem. This problem consists in designing a filter matrix that withstands
admissible variations of its coefficients. The concept of invariant ellipsoids is applied to refor-
mulate the original problem in terms of linear matrix inequalities and reduce it to a parametric
semidefinite programming problem easily solved numerically. This paper continues the series of
author’s research works devoted to filtering under nonrandom bounded exogenous disturbances
and measurement errors.
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1. INTRODUCTION

The filtering problem consists in estimating the state of a dynamic system from available mea-
surements. Under random disturbances, it admits an almost exhaustive solution using the Kalman
filter. However, in many situations, the randomness assumption becomes unreasonable for noises.
Often, one knows only that the disturbances are bounded but otherwise arbitrary; in this case,
the guaranteed estimates of the states can be constructed. This approach goes back to the re-
search works of Witzenhausen, Bertsekas and Rhodes, and Schweppe [1]. The ellipsoidal filtering
technique was developed by Russian scholars [2, 3].

Later, based on the technique of linear matrix inequalities (LMIs) [5, 6] and the concept of
invariant ellipsoids, the author jointly with Polyak studied the filtering problem for stationary
problems with bounded nonrandom disturbances [4]. In the class of linear time-invariant filters,
the problem turned out to be completely solvable: an optimal filter was designed, and a uniform
state estimation was obtained: its error is surely contained in a single ellipsoid for all time instants.
This topic was further developed in [7–9].

On the other hand, uncertainty is inevitably introduced into a control system due to the tech-
nical implementation imperfections of the controller or the need to tune its parameters during
operation. Even small perturbations of the optimal controller’s gains may violate its stabilizability
property [10]. This phenomenon was called fragility, and it was subsequently studied in various
problem statements; for example, see [11]. An approach to design the so-called nonfragile con-

trollers (the ones withstanding variations in their parameters) was proposed in [12, 13], as applied
to the suppression of nonrandom bounded disturbances.
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550 KHLEBNIKOV

This paper continues both lines of research. We describe a regular approach to nonfragile

filtering, i.e., designing a filter matrix that withstands admissible variations in its coefficients. As
it turns out, even small perturbations of the optimal filter matrix may violate the invariance of
the ellipsoid (obtained under the assumption of its exact implementation) containing the system
residual: the residual trajectories may leave this ellipsoid. The aim of this paper is to construct the
so-called nonfragile pair, i.e., the filter matrix and the corresponding ellipsoid (as small as possible)
that contains the system residual under all admissible perturbations of the filter matrix.

2. THE FILTERING PROBLEM: STATEMENT AND SOLUTION

Let us recall the statement and solution of the filtering problem with bounded exogenous dis-
turbances. Consider a linear continuous-time dynamic system described by

ẋ = Ax+D1w, x(0) = x0,

y = Cx+D2w,

z = C1x,

(1)

where A∈R
n×n, C ∈R

l×n, C1 ∈R
r×n, D1 ∈R

n×m, D2 ∈R
l×m, x(t)∈R

n is the state, y(t)∈R
l is

the observed output, z(t)∈R
r is the estimated output, and w(t)∈R

m is an exogenous disturbance
(noise) satisfying the constraint1

‖w(t)‖ 6 1 for all t > 0.

Although the disturbances in the system state and output generally have different nature, it is
convenient to consider them the same, supposing that the matrices D1 and D2 “cut out” different
pieces from the vector w. The pair (A,C) is assumed to be observable.

Let the system state x be unmeasurable, and let the information about the system be provided
by its output y. We design a filter described by a linear differential equation with respect to the
state estimate x̂ that includes the discrepancy between the output y and its forecast Cx̂ :

˙̂x = Ax̂+ L(y − Cx̂), L∈R
n×l. (2)

The filter (2) has the same structure as the well-known Luenberger observer [14, 15]: it is linear
and time-invariant, and only the constant matrix L (the so-called filter matrix ) has to be chosen
here.

We introduce the residual e(t) = x(t)− x̂(t); according to (1) and (2), it satisfies the differential
equation2

ė = (A− LC)e+ (D1 − LD2)w. (3)

Then the accuracy of filtering (estimating the output z) will be characterized by the value

e1 = z − ẑ = C1(x− x̂) = C1e.

The problem is to find the minimal (in a certain sense) single ellipsoid containing the residual e1.

The apparatus of LMIs and the ideology of invariant ellipsoids [5, 6] is a convenient technical
tool for solving this problem. Recall that an ellipsoid centered at the origin

E =
{
x∈R

n : xTP−1x 6 1
}
, P ≻ 0

1 Throughout this paper, ‖ · ‖ indicates the Euclidean vector norm and, simultaneously, the spectral matrix norm,
S
n is the space of symmetric matrices of order n, and I denotes an identity matrix of appropriate dimensions. All

matrix inequalities are understood in the sign definiteness sense.
2 Note that the filter matrix L stabilizes system (3). The existence of a matrix L making the matrix (A−LC) stable
(Hurwitz) follows from the observability of the original system (1).
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NONFRAGILE FILTERING UNDER BOUNDED EXOGENOUS DISTURBANCES 551

is said to be invariant for a dynamic system ẋ = Ax+Dw if the condition x(0)∈ E implies x(t)∈E
for all time instants t > 0. Moreover, given an invariant ellipsoid E with a matrix P, the linear
output z(t) = Cx(t)∈R

r of this dynamic system will belong to the bounding ellipsoid

Ez =
{
z ∈R

r : zT
(
CPCT

)−1
z 6 1

}

if x(0)∈ E and tend to it if x(0) /∈ E .

Thus, the ideology of invariant and bounding ellipsoids allows estimating the t-uniform accuracy
of filtering under small deviations and the asymptotic accuracy of filtering under large deviations.
Within this approach, for a fixed matrix L, we find the minimal bounding ellipsoid and then
minimize it with respect to L. A conventional optimality criterion for bounding ellipsoids is the
trace criterion f(P ) = trCPCT, which corresponds to the sum of the squares of its semi-axes.

The following result was established in [4].

Theorem 1. Let Q∗ and Y∗ be the solution of the optimization problem

min trH

subject to the constraints

(
ATQ+QA− Y C − CTY T + αQ QD1 − Y D2

DT
1 Q−DT

2 Y
T −αI

)
4 0,

(
H C1

CT
1 Q

)
< 0, Q ≻ 0

with respect to the matrix variables Q∈ S
n, Y ∈R

n×l, and H ∈S
r and the scalar parameter α > 0.

Then the optimal filter matrix is given by

L∗ = Q−1
∗ Y∗,

and the minimal bounding ellipsoid containing the estimation error of the output z of system (1)
with x0 = 0 is defined by the matrix

C1Q
−1
∗ CT

1 .

Note that for a fixed α, this problem reduces to a semidefinite programming problem easily
solved numerically.

Remark 1. If the initial state x(0) = x0 of system (1) is known, then the optimization problem
of Theorem 1 includes the additional constraint

xT0 Qx0 6 1,

meaning that e(0) = x(0)− x̂(0) = x0 ∈ E .

If the initial point belongs to some initial state ellipsoid

x(0) ∈ E0 =
{
x ∈ R

n : xTP−1
0 x 6 1

}
, P0 ≻ 0,

then the additional constraint is the LMI

Q 4 P−1
0 ,

meaning that E0 ⊂ E . In this case, we again have e(0) = x(0)− x̂(0) = x(0) ∈ E0 ⊂ E .

Thus, in both cases, the accuracy of filtering is estimated uniformly.
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552 KHLEBNIKOV

3. INVARIANCE AND NONFRAGILITY

We say that a filter matrix L and a positive definite matrix P = Q−1 form a nonfragile pair

with a nonfragility level γ if, for any ∆: ‖∆‖ 6 γ, the disturbed filter matrix (L+∆) stabilizes
system (3) and the matrix P defines its invariant ellipsoid. In this case, the filter and the cor-
responding bounding ellipsoid containing the estimation error of the system output will be both
called nonfragile. As before, we will strive to make this ellipsoid as small as possible.

Let us formulate the main result of the paper.

Theorem 2. Let Q̃ and Ỹ be the solution of the optimization problem

min trH

subject to the constraints




ATQ+QA− Y C − CTY T + αQ+ εCTC QD1 − Y D2 + εCTD2 γQ

DT
1 Q−DT

2 Y
T + εDT

2 C −αI + εDT
2 D2 0

γQ 0 −εI


 4 0,

(
H C1

CT
1 Q

)
< 0, Q ≻ 0

with respect to the matrix variables Q ∈ S
n, Y ∈ R

n×l, and H ∈ S
r, the scalar variable ε, and the

scalar parameter α > 0.

Then the matrix

C1Q̃
−1CT

1

defines a nonfragile bounding ellipsoid for the estimation error of the output z of system (1) with

x0 = 0 that corresponds to the nonfragile pair

L̃ = Q̃−1Ỹ , P̃ = Q̃−1

with the nonfragility level γ.

The proofs of Theorems 2 and 4 (see below) are provided in the Appendix.

As before, the problem formulated in Theorem 2 is a parametric semidefinite programming
problem easily solved numerically.

The approach below is based on constructing a common quadratic Lyapunov function for the
uncertain system and gives only sufficient conditions for robust asymptotic stability. We will not
analyze in detail the degree of conservatism of the resulting ellipsoidal estimate. However, numerical
examples indicate that conservatism is not very great.

Remark 2. Note that the nonfragile filter matrix L robustly stabilizes the system

ė =
(
A− (L+∆)C

)
e+

(
D1 − (L+∆)D2

)
w

under all admissible uncertainties ∆: ‖∆‖ 6 γ. With such a special structure of the closed-loop
system matrix, robust stabilization is possible for any γ (for example, see [6, Remark 5.2.1]). In
other words, the nonfragility level γ can be set arbitrarily large, which will only increase the size
of the nonfragile invariant ellipsoid.
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4. THE DISCRETE-TIME CASE

Consider the linear discrete-time system

xk+1 = Axk +D1wk,

yk = Cxk +D2wk,

zk = C1xk

(4)

with the initial condition x0, where A ∈ R
n×n, C ∈ R

l×n, C1 ∈ R
r×n, D1 ∈ R

n×m, D2 ∈ R
l×m,

xk ∈R
n is the state, yk ∈R

l is the observed output, zk ∈R
r is the estimated output, and wk ∈R

m

is an exogenous disturbance satisfying the constraint

‖wk‖ 6 1 for all k = 0, 1, 2, . . . .

By assumption, the pair (A,C) is observable.

As in the continuous-time case, we design a filter described by a linear difference equation
with respect to the state estimate x̂k that includes the discrepancy between the output y and its
forecast Cx̂k :

x̂k+1 = Ax̂k + L(yk − Cx̂k), L ∈ R
n×l.

Here, a constant filter matrix L has to be chosen.

The definition of the minimal bounding ellipsoid containing the estimation error

e1,k = zk − ẑk = C1ek,

where ek = xk − x̂k is the system residual, remains essentially the same as in the continuous-time
case. This ellipsoid can be found using the following result, representing a discrete-time analog of
Theorem 1.

Theorem 3 [4, 6]. Let Q∗ and Y∗ be the solution of the optimization problem

min trH

subject to the constraints




−αQ (QA− Y C)T 0

QA− Y C −Q QD1 − Y D2

0 (QD1 − Y D2)
T −(1− α)I


4 0,

(
H C1

CT
1 Q

)
< 0, Q ≻ 0

with respect to the matrix variables Q ∈ S
n, Y ∈ R

n×l, and H ∈ S
r and the scalar parameter 0 <

α < 1.

Then the optimal filter matrix is given by

L∗ = Q−1
∗ Y∗,

and the minimal bounding ellipsoid containing the estimation error of the output z of system (4)
with x0 = 0 is defined by the matrix

C1Q
−1
∗ CT

1 .

A nonfragile pair is defined by analogy with the continuous-time case; it can be found using the
following result.
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Theorem 4. Let Q̃ and Ỹ be the solution of the optimization problem

min trH

subject to the constraints




−αQ+ εCTC (QA− Y C)T εCTD2 0

QA− Y C −Q QD1 − Y D2 γQ

εDT
2 C (QD1 − Y D2)

T −(1− α)I + εDT
2 D2 0

0 γQ 0 −εI




4 0,

(
H C1

CT
1 Q

)
< 0, Q ≻ 0

with respect to the matrix variables Q ∈ S
n, Y ∈ R

n×l, and H ∈ S
r, the scalar variable ε, and the

scalar parameter 0 < α < 1.

Then the matrix

C1Q̃
−1CT

1

defines a nonfragile bounding ellipsoid for the estimation error of the output zk of system (4) with
x0 = 0 that corresponds to the nonfragile pair

L̃ = Q̃−1Ỹ , P̃ = Q̃−1

with the nonfragility level γ.

As in the continuous-time case, the optimization problem of Theorem 4 is a simple parametric
semidefinite programming problem.

Also, we emphasize the validity of Remark 2 in the discrete-time case. That is, the system

ek+1 =
(
A− (L+∆)C

)
ek +

(
D1 − (L+∆)D2

)
wk

can be robustly stabilized under all admissible uncertainties ∆: ‖∆‖ 6 γ for any nonfragility level γ.

5. EXAMPLE

We demonstrate the invariant ellipsoids-based filtering approach for bounded exogenous distur-
bances on an example of estimating the state of a double-spring pendulum (Fig. 1).

Let x1 and x2 denote the coordinates of the left and right body, respectively, and let v1 and
v2 be their velocities. The right body is affected by an exogenous disturbance w1. The disturbed

x1 x2

k1 k2

w1

m2m1

x0

Fig. 1. A double-spring pendulum.
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oscillations of the system are described by the continuous-time model

ẋ1 = v1,

ẋ2 = v2,

v̇1 = −
k1 + k2
m1

x1 +
k2
m1

x2,

v̇2 =
k2
m2

x1 −
k2
m2

x2 +
1

m2

w1,

where k1 and k2 indicate the stiffness coefficients of the left and right spring, respectively, and m1

and m2 are the masses of the left and right body, respectively.

Selecting the state vector

x =




x1
x2
v1
v2


 ,

the observed output

y =

(
x1
x2

)
+ 0.1

(
w2

w3

)

(the noisy coordinates), and the estimated output

z =

(
v1
v2

)

(the velocities), we arrive at system (1) with the matrices

A =




0 0 1 0

0 0 0 1

−
k1 + k2
m1

k2
m1

0 0

k2
m2

−
k2
m2

0 0




, D =




0 0 0

0 0 0

0 0 0

1

m2

0 0



,

C =

(
1 0 0 0
0 1 0 0

)
, D2 =

(
0 0.1 0
0 0 0.1

)
, C1 =

(
0 0 1 0
0 0 0 1

)
.

In addition,

w =



w1

w2

w3


 , ‖w‖ 6 1.

For the sake of simplicity, we assume the unity system parameters k1 = k2 = m1 = m2 = 1 and
take P0 = 0.15I.

First, using Theorem 1, we find the solution without the nonfragility requirement. The result is
the filter matrix

L∗ =




1.4808 0.2309
−0.1641 2.1590
−0.5457 1.0867
0.6232 3.4354
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and the matrix

Q∗ =




5.0166 −0.1455 −2.0847 −0.0184
−0.1455 6.1854 −0.1544 −1.5832
−2.0847 −0.1544 4.0310 0.0762
−0.0184 −1.5832 0.0762 1.3265


 ;

the corresponding minimal bounding ellipse E∗ with the matrix

C1Q
−1
∗ CT

1 =

(
0.3167 −0.0046
−0.0046 1.0863

)

contains the estimation error e1 of the output z.

Next, we set the nonfragility level
γ = 2.

Solving the optimization problem of Theorem 2 yields the filter matrix

L̃ =




23.3910 0.9878
0.9883 21.9974
14.5498 1.0207
0.9240 26.6793




and the matrix

Q̃ =




5.3807 −0.1112 −2.0697 −0.0284
−0.1112 6.2215 −0.1462 −1.5363
−2.0697 −0.1462 3.3329 0.0697
−0.0284 −1.5363 0.0697 1.2650


 .

The resulting nonfragile pair is (L̃, P̃ ), where

P̃ =




0.2446 0.0103 0.1522 0.0097
0.0103 0.2301 0.0107 0.2790
0.1522 0.0107 0.3951 −0.0054
0.0097 0.2790 −0.0054 1.1299


 ;

the corresponding nonfragile bounding ellipse Ẽ with the matrix

C1Q̃
−1CT

1 =

(
0.3951 −0.0054
−0.0054 1.1299

)

contains the estimation error e1 of the output z. Note that the sizes of the ellipses Ẽ and E∗ (in
terms of the trace criterion) differ by less than 9%.

In Fig. 2, the solid line shows the nonfragile bounding ellipse Ẽ ; the dashed line, the minimal
bounding ellipse E∗; the dotted line, the projection of the initial state ellipsoid onto the plane
(v1, v2), representing an ellipse with the matrix C1P0C

T
1 (see Remark 1).

Now we subject the optimal filter matrix L∗ to the perturbation

∆ =




−0.0171 0.1641
−0.0714 −0.4232
−0.9640 −0.1353
0.2461 −0.7643


 , ‖∆‖ = 1.

In Fig. 3, the dotted line shows the trajectory of the residual e1 under some initial condition
x0 ∈ E0 (the circle indicates its projection onto the plane (v1, v2)), some admissible exogenous
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Fig. 2. Bounding ellipses.

Fig. 3. Residual trajectories.
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disturbance w, and the filter matrix (L∗ +∆). Clearly, the trajectory leaves the minimal bounding
ellipse E∗ and, moreover, the nonfragile bounding ellipse Ẽ , despite that the range of uncertainty
in the filter matrix is half the nonfragility level γ = 2.

For comparison, we subject the nonfragile filter matrix L̃ to a perturbation of twice the magni-
tude (‖2∆‖ = 2 = γ). The solid line in Fig. 3 shows the resulting trajectory of the system residual e1
under the same initial condition and exogenous disturbance; clearly, the behavior relative to the
bounding ellipse is fundamentally different.

All calculations were performed in Matlab using the cvx package [17].

6. CONCLUSIONS

This paper has proposed a simple and universal approach to the nonfragile filtering of arbitrary
bounded exogenous disturbances. The approach involves an observer and the method of invari-
ant ellipsoids. With this concept, the original problem has been reformulated in terms of LMIs
and reduced to a parametric semidefinite programming problem easily solved numerically. The
effectiveness of the filtering method has been demonstrated using an example of a double-spring
pendulum.
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APPENDIX

Proof of Theorem 2. For the perturbed filter matrix (L+∆), the residual e of system (1) satisfies
the differential equation

ė =
(
A− (L+∆)C

)
e+

(
D1 − (L+∆)D2

)
w. (A.1)

According to [6], for the dynamic system (A.1), the invariance condition of an ellipsoid with a
matrix P = Q−1 ≻ 0 is equivalent to the existence of a scalar α(∆) > 0 such that the LMI

((
A− (L+∆)C

)T
Q+Q

(
A− (L+∆)C

)
+α(∆)Q Q

(
D1− (L+∆)D2

)
(
D1− (L+∆)D2

)T
Q −α(∆)I

)
4 0 (A.2)

holds under all admissible matrix uncertainties ∆: ‖∆‖ 6 γ.

Suppose that for some α > 0, inequality (A.2) is valid under all admissible ∆; then (A.2) can
be written as

(
(A− LC)TQ+Q(A− LC) + αQ Q(D1 − LD2)

(D1 − LD2)
TQ −αI

)

+

(
Q
0

)
∆
(
−C −D2

)
+

(
−CT

−DT
2

)
∆T

(
Q 0

)
4 0.

By Petersen’s lemma [16] (also, see [6, Corollary 2.2.6]), this inequality holds iff there exists a
scalar ε > 0 such that

(
(A− LC)TQ+Q(A− LC) + αQ Q(D1 − LD2)

(D1 − LD2)
TQ −αI

)

+ε

(
−CT

−DT
2

)(
−C −D2

)
+

γ2

ε

(
Q
0

)(
Q 0

)
4 0.
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Using Schur’s complement lemma, we therefore obtain



(A−LC)TQ+Q(A−LC)+αQ+ εCTC Q(D1−LD2)+ εCTD2 γQ

(D1−LD2)
TQ+ εDT

2 C −αI+ εDT
2 D2 0

γQ 0 −εI


4 0.

With the new matrix variable Y = QL, this expression can be reduced to the linear form


ATQ+QA−Y C−CTY T+αQ+εCTC QD1−Y D2+εCTD2 γQ

DT

1
Q−DT

2
Y T+εDT

2
C −αI+εDT

2
D2 0

γQ 0 −εI


4 0. (A.3)

Since e1 = C1e, the residual e1 is contained in the bounding ellipsoid with the matrix C1Q
−1CT

1 .
Thus, we arrive at the problem

min trC1Q
−1CT

1 subject to the constraints (A.3) and Q ≻ 0.

According to [6], this problem is equivalent to minimizing trH subject to the constraints (A.3) and
(
H C1

CT
1 Q

)
< 0,

where H ∈ S
r is an auxiliary matrix variable. The proof of Theorem 2 is complete.

Proof of Theorem 4. For the perturbed filter matrix (L+∆), the residual of system (4) satisfies
the difference equation

ek+1 =
(
A− (L+∆)C

)
ek +

(
D1 − (L+∆)D2

)
wk. (A.4)

According to [6], for the dynamic system (A.4), the invariance condition of an ellipsoid with a
matrix P = Q−1 ≻ 0 is equivalent to the existence of a scalar α(∆) > 0 such that the LMI




−α(∆)Q
(
A− (L+∆)C

)T
Q 0

Q
(
A− (L+∆)C

)
−Q Q

(
D1 − (L+∆)D2

)

0
(
D1 − (L+∆)D2

)T
Q −

(
1− α(∆)

)
I


 4 0 (A.5)

holds under all admissible matrix uncertainties ∆: ‖∆‖ 6 γ.

Suppose that for some α > 0, inequality (A.5) is valid under all admissible ∆; then (A.5) can
be written as 



−αQ (A− LC)TQ 0

Q(A− LC) −Q Q(D1 − LD2)

0 (D1 − LD2)
TQ −(1− α)I




+



0
Q
0


∆

(
−C 0 −D2

)
+



−CT

0
−DT

2


∆T

(
0 Q 0

)
4 0.

By Petersen’s lemma, this inequality holds iff there exists a scalar ε > 0 such that



−αQ (A− LC)TQ 0

Q(A− LC) −Q Q(D1 − LD2)

0 (D1 − LD2)
TQ −(1− α)I




+ ε



−CT

0
−DT

2



(
−C 0 −D2

)
+

γ2

ε



0
Q
0



(
0 Q 0

)
4 0.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 6 2024



560 KHLEBNIKOV

Using Schur’s complement lemma, we accordingly have




−αQ+ εCTC (A− LC)TQ εCTD2 0

Q(A− LC) −Q Q(D1 − LD2) γQ

εDT
2 C (D1 − LD2)

TQ −(1− α)I + εDT
2 D2 0

0 γQ 0 −εI




4 0.

With the new matrix variable Y = QL, this expression can be reduced to the linear form




−αQ+ εCTC (QA− Y C)T εCTD2 0

QA− Y C −Q QD1 − Y D2 γQ

εDT
2 C (QD1 − Y D2)

T −(1− α)I + εDT
2 D2 0

0 γQ 0 −εI




4 0. (A.6)

Similar to the continuous-time case, we finally arrive at the optimization problem

min trC1Q
−1CT

1 subject to the constraints (A.6) and Q ≻ 0.

This problem is equivalent to minimizing trH subject to the constraints (A.6) and

(
H C1

CT
1 Q

)
< 0,

where H ∈ S
r is an auxiliary matrix variable. The proof of Theorem 4 is complete.
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